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1. Introduction

Extensions of the Standard Model (SM) generally involve mass scales that are much higher

than the scale of electroweak symmetry breaking. If one views the SM as a low-energy

effective theory, then the Higgs boson squared mass m2
h receives radiative corrections that

grow quadratically with the cutoff. This leads to the hierarchy problem: A large separation

of scales requires an extremely close cancellation between the bare Higgs boson mass and

the cutoff-dependent loop corrections. Within the low-energy effective theory, such a fine

tuning has no natural explanation.

Solutions to the hierarchy problem can be grouped into three broad categories, dis-

tinguished by their assumptions: (1) models that assume fine tuning to be extreme and

present, but natural from the point of view of the string landscape, as in split-supersymmetric

models [1]; (2) models that assume fine tuning is not extreme since no high mass scales

are present, as in scenarios with large extra dimensions and a low Planck scale [2]; (3)

models that assume fine tuning is not extreme, even when high mass scales are present,

because new physics just above the electroweak scale modifies the ultraviolet divergence of

m2
h from quadratic to logarithmic. The Minimal Supersymmetric Standard Model (MSSM)

is perhaps the most famous example of a model in the last category: Each SM particle

has a supersymmetric partner with the same gauge quantum numbers but opposite spin
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statistics. As fermion and boson loops enter with opposite relative signs, quadratic diver-

gences cancel between Feynman loop diagrams when both particles and their associated

superpartners are taken into account.

A similar cancellation is achieved in the Lee-Wick Standard Model (LWSM) [3], which

has recently been proposed as a theory that solves the hierarchy problem. Each SM particle

possesses a Lee-Wick (LW) partner [4] with the same spin statistics, but with opposite-sign

quadratic terms. Since the propagators of ordinary and LW particles differ in overall sign,

quadratic divergences cancel between pairs of diagrams. A LW partner for a given field

arises via the inclusion of a higher-derivative (HD) kinetic term which generates an addi-

tional pole in the associated two-point function. As reviewed below, the HD Lagrangian

can be recast, using auxiliary fields, as a dimension-four Lagrangian that includes partner

fields with “wrong-sign” quadratic terms [3]. The cancellation of divergences in this formu-

lation of the theory occurs because HD terms in the original Lagrangian cause propagators

to fall off more quickly with momentum, so that loop diagrams become less divergent.

While LW particles have wrong-sign kinetic and mass terms (like Pauli-Villars regula-

tors) it is nonetheless believed consistent to treat them as physical particles. Neither the

LWSM [3], in which all the LW states can decay, nor the O(N) LW model at large N [5]

violates causality at a macroscopic level. Moreover, studies of longitudinal gauge-boson

scattering in the LWSM indicate that unitarity is not violated provided the HD theory can

be mapped to a Lagrangian with interactions of dimension four or less [6]. Taking these

observations into account, a number of authors have begun to explore the phenomenol-

ogy [7, 8] and cosmology [9] of LW extensions of the SM. These studies have assumed the

minimal theory, in which the lowest-order HD term for each field is included, and precisely

one LW partner accompanies each SM particle.

While the minimal scenario is the simplest to study, one may wonder whether the

inclusion of a single HD term, and exactly no others of higher order, represents a natural

state of affairs. In this paper we explore a next-to-minimal scenario that includes HD

terms of the next order in a derivative expansion, leading to two partners for each SM

particle. Our immediate focus is a technical one: What is the generalization of the auxiliary

field (AF) formulation introduced in the minimal theory [3], and what form of the HD

Lagrangian leads to an auxiliary field theory with interactions of dimension four or less?

We address this question in a non-Abelian gauge theory with fermions and complex scalars,

so that our results can be immediately applied to the SM. Interestingly, one of the two new

LW partners for each SM particle is ordinary (with correct-sign quadratic terms), suggesting

that collider signatures and experimental limits on this theory can be qualitatively different

from the minimal version. Our results suggest that there is no impediment, in principle,

to constructing similar theories with additional LW states via the inclusion of appropriate

interactions that are of yet higher order in the number of derivatives.

We note that previous work [10, 11] extensively studies a particular O(p6) form for a

HD scalar Lagrangian, in which O(p4) terms are absent and gauge couplings are omitted.

In particular, this work develops a strongly-interacting Higgs sector that tames ultraviolet

corrections and can be studied on the lattice. Reference [10] represents pioneering early

work on the consistency of O(p6) scalar theories. By contrast, the thrust here is to study
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the duality between more general HD theories with O(p6) terms and equivalent theories

with operators of dimension four or less, not only in the Higgs sector but including all SM

particles, with an eye toward future phenomenological studies.

This paper is organized as follows. In the next section we review the LW idea in a

simple scalar field theory and show how the AF formulation is applied when HD terms

of next-to-lowest order are present. In section 3 we extend our approach to non-Abelian

gauge theories, focusing on the pure gauge sector; in section 4 we show how fermions are

included in the theory. In section 5 we discuss the Higgs sector of the theory. In section 6

we discuss the cancellation of one-loop quadratic divergences in an SU(Nc) gauge theory

with complex scalars and chiral fermions. In section 7 we summarize our conclusions.

2. A scalar example

Let us begin by reviewing the formulation of a LW theory of a real scalar field. The simplest

HD Lagrangian is given by

LHD = −1

2
φ̂� φ̂− 1

2M2
φ̂�

2φ̂− 1

2
m2

φφ̂
2 + Lint(φ̂) , (2.1)

where the last term represents interactions. The HD term leads to an additional pole in the

φ̂ two-point function near the mass M , which corresponds to the LW partner of the usual

state with mass eigenvalue near mφ. The HD term also assures high-momentum falloff of

the φ̂ propagator as 1/p4, improving the convergence of φ̂ loop diagrams. Following the

approach of ref. [3], one observes that eq. (2.1) is equivalent to a Lagrangian including an

auxiliary field, φ̃ and no higher-derivative interactions:

LAF = −1

2
φ̂� φ̂− 1

2
m2

φφ̂
2 − φ̃� φ̂+

1

2
M2φ̃2 + Lint(φ̂) . (2.2)

The φ̃ equation of motion (EOM) is

φ̃ =
1

M2
� φ̂ , (2.3)

which, upon substitution into eq. (2.2), reproduces the original Lagrangian of eq. (2.1).

The kinetic terms in eq. (2.2) can be diagonalized via the substitution

φ̂ = φ− φ̃ , (2.4)

yielding

L = −1

2
φ�φ+

1

2
φ̃� φ̃− 1

2
m2

φ(φ− φ̃)2 +
1

2
M2φ̃2 + Lint(φ− φ̃) . (2.5)

The scalar mass matrix can be diagonalized without affecting the form of the kinetic terms

via a symplectic transformation:

(

φ

φ̃

)

=

(

cosh θ sinh θ

sinh θ cosh θ

)(

φ0

φ̃0

)

, (2.6)
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where the subscript 0 indicates a mass eigenstate; one finds

tanh 2θ =
−2m2

φ

M2 − 2m2
φ

. (2.7)

The final Lagrangian takes the form

LLW = −1

2
φ0 �φ0 +

1

2
φ̃0 � φ̃0 −

1

2
m2

0φ
2
0 +

1

2
M2

0 φ̃
2
0 + Lint[e

−θ(φ0 − φ̃0)] , (2.8)

where m0 and M0 are the mass eigenvalues, and the factor of e−θ can be absorbed into

redefinitions of the couplings. The opposite-sign φ0 and φ̃0 propagators following from the

quadratic terms in eq. (2.8), together with the specific relationship between the φ0 and φ̃0

couplings in Lint, assures the cancellation of quadratic divergences, as is shown explicitly

in ref. [3].

Indicating by N the number of physical poles in the φ̂ propagator, let us refer to the

minimal example just considered as an N = 2 theory. An N = 3 model corresponds to a

HD Lagrangian of the general form

LN=3
HD = −1

2
φ̂� φ̂− 1

2M2
1

φ̂�
2φ̂− 1

2M4
2

φ̂�
3φ̂− 1

2
m2

φφ̂
2 + Lint(φ̂) , (2.9)

whereM1 andM2 are the LW mass scales, which we assume are comparable. The restriction

that the φ̂ propagator has three physical poles restricts the values of m2
φ, M2

1 and M2
2 , so

that it is possible to map eq. (2.9) to a Lagrangian of the form

LN=3
LW =

3
∑

i=1

ci

[

−1

2
φ(i)(� +m2

i )φ
(i)

]

+ Lint({φ(i)}) , (2.10)

where the ci = 1 or − 1, and the m2
i are positive. The missing link that connects eq. (2.9)

to (2.10) is an AF Lagrangian, analogous to eq. (2.2) in the N = 2 theory, and appropriate

field redefinitions, analogous to eq. (2.4). Let us first examine the special case wheremφ = 0

[which corresponds to m1 = 0 in eq. (2.10)] before stating the general result. The desired

AF Lagrangian involves two new scalar fields, χ and ψ:

LAF = −1

2
φ̂� φ̂− χ� φ̂+m2m3 χψ − 1

2
ψ�ψ − 1

2
(m2

2 +m2
3)ψ

2 + Lint(φ̂) . (2.11)

Like the field φ̃ in the N = 2 theory, χ is an auxiliary field; since it occurs linearly in

eq. (2.11), its EOM imposes a constraint that is exact at the quantum level:

ψ =
1

m2m3
� φ̂ . (2.12)

Substituting eq. (2.12) into eq. (2.11), one obtains

LHD = −1

2
φ̂� φ̂− 1

2

(

m2
2 +m2

3

m2
2m

2
3

)

φ̂�
2φ̂− 1

2

(

1

m2
2m

2
3

)

φ̂�
3φ̂+ Lint(φ̂) , (2.13)
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which factorizes as

LHD = − 1

2m2
2m

2
3

φ̂� (� +m2
2)(� +m2

3) φ̂+ Lint(φ̂) , (2.14)

and from which one identifies mφ = 0, M2
1 = m2

2m
2
3/(m

2
2 + m2

3) and M4
2 = m2

2m
2
3 upon

comparison with eq. (2.9).

Showing next that the AF Lagrangian can also be written in the form of eq. (2.10) is

a simple matter of linear algebra. Taking m2 to be the lighter LW state and substituting

the field redefinitions

φ̂ = φ(1) − m3

(m2
3 −m2

2)
1/2

φ(2) +
m2

(m2
3 −m2

2)
1/2

φ(3) , (2.15)

χ =
1

(m2
3 −m2

2)
1/2

[

m3φ
(2) −m2φ

(3)
]

, (2.16)

ψ =
1

(m2
3 −m2

2)
1/2

[

m2φ
(2) −m3φ

(3)
]

, (2.17)

into eq. (2.11), one obtains

L = −1

2
φ(1)

�φ(1) +
1

2
φ(2)(� + m2

2)φ
(2) − 1

2
φ(3)(� + m2

3)φ
(3) + Lint(φ̂) . (2.18)

As with eq. (2.4) in the N = 2 theory, eq. (2.15) leads to a very specific form for the

interaction terms in eq. (2.18). We find that there is no finite field redefinition that takes

the AF Lagrangian eq. (2.11) to the LW form eq. (2.18) for m2 = m3, so we do not consider

that possibility further.

For completeness, we exhibit the results formφ (andm1) non-zero. The AF Lagrangian

is given by

LAF =
1

η1

[

−1

2
φ̂ (� +m2

1)φ̂− χ(� +m2
1)φ̂+ (m2

3 −m2
1)

1/2(m2
2 −m2

1)
1/2χψ

−1

2
ψ�ψ − 1

2
(m2

2 +m2
3 −m2

1)ψ
2

]

+ Lint(φ̂) , (2.19)

where η1≡(m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3)/(m

2
2 −m2

1)(m
2
3 −m2

1). Varying eq. (2.19) with respect

to auxiliary field χ generalizes the EOM eq. (2.12) to

ψ =
1

(m2
2 −m2

1)
1/2(m2

3 −m2
1)

1/2
(� +m2

1) φ̂ , (2.20)

which, when substituted back into eq. (2.19), yields

LHD = − 1

2Λ4
φ̂ (� +m2

1)(� +m2
2)(� +m2

3) φ̂ , (2.21)

where

Λ4 ≡ m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3 . (2.22)
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Equation (2.21) is equivalent to the HD Lagrangian in eq. (2.9) with the identifications

m2
φ = (m2

1m
2
2m

2
3)/Λ

4 , (2.23)

M2
1 = Λ4/(m2

1 +m2
2 +m2

3) , (2.24)

M2
2 = Λ2 . (2.25)

On the other hand, one can obtain the canonical LW form, eq. (2.10) with c1 =−c2 =c3 =1,

from eq. (2.19) by the field redefinitions

φ̂ =
√
η1 φ

(1)−√−η2 φ
(2) +

√
η3 φ

(3) , (2.26)

χ =
√−η2 φ

(2)−√
η3 φ

(3) , (2.27)

ψ =
√
η3 φ

(2)−√−η2 φ
(3) , (2.28)

where the parameters ηi are defined by

η1 ≡ Λ4

(m2
2 −m2

1)(m
2
3 −m2

1)
, (2.29)

η2 ≡ Λ4

(m2
1 −m2

2)(m
2
3 −m2

2)
, (2.30)

η3 ≡ Λ4

(m2
1 −m2

3)(m
2
2 −m2

3)
. (2.31)

Noting, for example, that η1 =1 when m1 =0, one sees that eqs. (2.15)–(2.17) immediately

follow in this case. As before, we assume m3 > m2 > m1, so that sign(ηi) = (−1)i+1.

The remarkable algebraic simplifications that occur in converting the AF Lagrangian are

a consequence of simple sum rules that are satisfied by the ηi:

3
∑

i=1

m2n
i ηi = 0 (n = 0, 1), (2.32)

3
∑

i=1

m2n
i ηi = Λ4 (n = 2), (2.33)

m2
1m

2
2η3 +m2

2m
2
3η1 +m2

3m
2
1η2 = Λ4 . (2.34)

Our ηi parameters are equivalent to those introduced by Pais and Uhlenbeck [12] (which we

call ηPU
i ) to describe purely quantum-mechanical theories with HD Lagrangians analogous

to those used here. The mapping

ηi =
m4

i Λ
2N−2

Πjm
2
j

ηPU
i (2.35)

converts the sum rules of ref. [12] into eqs. (2.32) and (2.34) for the case N = 3, while

eq. (2.33) is linearly dependent on the others.

The interaction terms in the general N = 3 theory are functions of φ̂. Following from

eq. (2.26),

Lint(φ̂) ≡ Lint

(√
η1 φ

(1)−√−η2 φ
(2) +

√
η3 φ

(3)
)

. (2.36)
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The restriction on the form of the couplings imposed by eq. (2.36) is necessary for the

cancellation of divergences. This fact is illustrated in the following simple example: Let

Lint(φ̂) = λφ̂4/4!, or equivalently,

Lint(φ̂) =
λ

4!

∑

ijkl

√

|ηiηjηkηl|φ(i)φ(j)φ(k)φ(l) . (2.37)

The self-energy for φ(1) (corresponding to the state that is present when the LW particles

are decoupled) is given by

Π(p2) = λη1

∫

d4p

(2π)4

∑

k

[

(−1)k+1 i

p2 −m2
k

]

|ηk| , (2.38)

where the factor (−1)k+1 yields the appropriate overall sign for each scalar propagator.

Using the fact that (−1)k+1|ηk| = ηk and formally expanding the integrand, one finds

Π(p2) = i λη1

∫

d4p

(2π)4

∑

k

(

ηk

p2
+
ηkm

2
k

p4
+
ηkm

4
k

p6
+ · · ·

)

. (2.39)

The first two terms vanish as a consequence of the n = 0 and 1 sum rules, eq. (2.32),

respectively; these terms would otherwise be quadratically and logarithmically divergent,

respectively. Although the interactions in the LW form of the N = 3 theory are more

complicated than in the N = 2 case, the sum rules satisfied by the ηi always provide the

necessary algebraic miracles that cancel the leading divergences in the theory.1

3. Pure Yang-Mills theory

We now generalize the approach of the previous section to a pure Yang-Mills theory. The

next-to-leading-order HD Lagrangian reads

LHD = −1

2
Tr F̂µν F̂

µν −
(

1

m2
2

+
1

m2
3

)

TrF̂µνD̂
µD̂αF̂

αν − 1

m2
2m

2
3

TrF̂µνD̂
µD̂αD̂

[αD̂βF̂
βν] ,

(3.1)

where the superscript brackets indicate antisymmetrization of just the first and last indices:

X [α1α2···αN−1αN ] ≡ Xα1α2···αN−1αN −XαN α2···αN−1α1 . (3.2)

Equation (3.1) can be written in the elegant factorized form

LHD = Tr F̂µν

(

1

2
gµ

α +
D̂µD̂α

m2
2

)[(

1

2
gν

β +
D̂νD̂β

m2
3

)

gα
λ − (α↔ ν)

]

F̂ βλ . (3.3)

The field strength F̂ , and the covariant derivative D̂ acting upon a field X transforming

in the adjoint representation of the gauge group, are defined in the usual manner:

F̂µν ≡ ∂µÂν − ∂νÂµ − ig [Âµ, Âν ] , (3.4)

D̂µX ≡ ∂µX − ig [Âµ,X] . (3.5)

1Despite this example, N > 2 LWSMs are not finite theories, but remain logarithmically divergent, as

can be shown by a generalization of the power-counting argument given in ref. [3].
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This HD Lagrangian may be obtained from the equivalent Lagrangian

LYM = −1

2
Tr F̂µν F̂

µν − Tr F̂µν(D̂µχν − D̂νχµ) − 1

2
Tr (D̂µων − D̂νωµ)2

−2m2m3 Trχµω
ν + (m2

2 +m2
3)Trωµω

µ , (3.6)

where the new fields χ and ω transform in the adjoint representation. Integration by parts

on the second term leads to a form for LYM in which no derivatives on χ appear, making

it an auxiliary field; since χ appears linearly in LYM, it is also a Lagrange multiplier. The

constraint imposed by its EOM,

D̂νF̂
νµ −m2m3 ω

µ = 0 , (3.7)

is exact at the quantum level. Using eq. (3.7) to eliminate ωµ from eq. (3.6), one finds

that the terms proportional to χ cancel, and that the remaining terms reduce to the HD

Lagrangian, eq. (3.1).

In order to obtain a Lagrangian in the LW form, we rewrite the three fields Â, χ and

ω in terms of three new fields A1,2,3:

Aµ
1 ≡ Âµ + χµ ,

Aµ
2 ≡

√

−η2

η1
χµ −

√

η3

η1
ωµ ,

Aµ
3 ≡

√

η3

η1
χµ −

√

−η2

η1
ωµ . (3.8)

Under the action of the gauge group, A2 and A3 transform as matter fields in the adjoint

representation, while A1 transforms as a gauge field, due to the additional shift in Â. The

inverse transformations are given by

Âµ = Aµ
1 −

√

−η2

η1
Aµ

2 +

√

η3

η1
Aµ

3 ,

χµ =

√

−η2

η1
Aµ

2 −
√

η3

η1
Aµ

3 ,

ωµ =

√

η3

η1
Aµ

2 −
√

−η2

η1
Aµ

3 , (3.9)

as may be shown by using the sum rule eq. (2.32). Substituting eqs. (3.9) into eq. (3.6) is a

laborious but straightforward procedure. Using eqs. (2.29)–(2.31) to express the parameters

ηi in terms of masses m2,3, and defining the unhatted field strength Fµν
1 and covariant

derivative Dµ as analogous to eqs. (3.4)–(3.5) with Âµ→Aµ
1 , one obtains the Lagrangian

LYM,LW = L0 + L1 + L2 , (3.10)

where the subscript indicates the power of g that appears in the coefficient of each gauge-

invariant term. The kinetic and mass terms are contained in

L0 = −1

2
TrFµν

1 F1µν +
1

2
Tr(DµA2ν −DνA2µ)2 − 1

2
Tr(DµA3ν −DνA3µ)2

−m2
2 TrAµ

2A2µ +m2
3 TrAµ

3A3µ , (3.11)

– 8 –
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from which one immediately sees that A1 is massless (m1 =0), and only A2 has wrong-sign

quadratic terms,

L1 =
−ig

m2
3 −m2

2

Tr (F1µν [m3A
µ
2 −m2A

µ
3 , m3A

ν
2 −m2A

ν
3 ])

+
ig

(m2
3 −m2

2)
1/2

{Tr (DµA2ν −DνA2µ) (2m3 [Aµ
2 , A

ν
2 ] −m2 [Aµ

2 , A
ν
3 ] −m2 [Aµ

3 , A
ν
2 ])

+Tr (DµA3ν −DνA3µ) (2m2 [Aµ
3 , A

ν
3 ] −m3 [Aµ

2 , A
ν
3 ] −m3 [Aµ

3 , A
ν
2 ])} ,
(3.12)

and finally,

L2 =
g2

2(m2
3 −m2

2)
2

×
{

m2
3(4m

2
2−3m2

3)Tr [Aµ
2 , A

ν
2 ]

2
+2m2

2m
2
3Tr [Aµ

2 , A
ν
2 ] [A3µ, A3ν ]+m2

2(4m
2
3−3m2

2)Tr [Aµ
3 , A

ν
3 ]

2

+2m2m3(m
2
3 − 2m2

2)Tr [Aµ
2 , A

ν
2 ] ([A2µ, A3ν ] + [A3µ, A2ν ])

+2m2m3(m
2
2 − 2m2

3)Tr [Aµ
3 , A

ν
3 ] ([A2µ, A3ν ] + [A3µ, A2ν ])

+(m4
2 −m2

2m
2
3 +m4

3)Tr ([Aµ
2 , A

ν
3 ] + [Aµ

3 , A
ν
2 ]) ([A2µ, A3ν ] + [A3µ, A2ν ])

}

. (3.13)

While these expressions appear rather involved, they are substantially simpler than

they could be, owing to the sum rules eqs. (2.32)–(2.34). Note that the decay A3→A2A1

follows from the first term in L1 since m3 > m2. In a complete theory, including fermions

and Higgs fields, decay channels open for A2 as well.

4. Fermions

The next-to-leading-order HD Lagrangian for a chiral fermion field φ̂L assumes the com-

pact form

LHD, f =
1

m2
2m

2
3

φ̂L

[

(iD̂/ )2 −m2
2

] [

(iD̂/ )2 −m2
3

]

iD̂/ φ̂L , (4.1)

where D̂/ includes both the gauge bosons and their LW partners. This HD Lagrangian may

be obtained from the equivalent Lagrangian

Lf = φ̂LiD̂/ φ̂L − χRiD̂/ χR + ψLiD̂/ ψL + (φ̂LiD̂/ χL + h.c.) + (χRiD̂/ ψR + h.c.)

+
m2m3

m2 +m3
[χR (χL + ψL) + h.c.] − (m2 +m3)

(

ψLψR + h.c.
)

. (4.2)

The fields χL and ψR, which like φ̂L are Weyl spinors transforming in the fundamental

representation of the gauge group, appear only linearly in eq. (4.2), and therefore may be

considered auxiliary. Varying Lf with respect to them yields the constraints

iD̂/ φ̂L +
m2m3

m2 +m3
χR = 0 , (4.3)

iD̂/ χR − (m2 +m3)ψL = 0 , (4.4)
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which may be substituted directly into Lf to eliminate all terms linear in χL and ψR, and

also to re-express the the remaining fields χR, ψL in terms of φ̂L:

χR = −m2 +m3

m2m3
iD̂/ φ̂L , (4.5)

ψL =
iD̂/

m2 +m3
χR = − 1

m2m3
(iD̂/ )2φ̂L , (4.6)

where the final equality is obtained by substituting eq. (4.3) into eq. (4.4). It is straight-

forward to check that these EOMs transform eq. (4.2) into the HD form eq. (4.1).

In order to obtain a Lagrangian in the LW form, we rewrite the three left-handed fields

φ̂L, χL and ψL in terms of three new fields φ
(1,2,3)
L , and the two right-handed fields χR, ψR

in terms of two new fields φ
(2,3)
R :

φ
(1)
L ≡ φ̂L + χL ,

φ
(2)
L ≡

√

−η2

η1
χL −

√

η3

η1
ψL ,

φ
(3)
L ≡

√

η3

η1
χL −

√

−η2

η1
ψL , (4.7)

and

φ
(2)
R ≡

√

−η2

η1
χR −

[
√

−η2

η1
+

√

η3

η1

]

ψR ,

φ
(3)
R ≡

√

η3

η1
χR −

[
√

−η2

η1
+

√

η3

η1

]

ψR . (4.8)

The inverse transformations, whose simplification uses the sum rule eq. (2.32), are

φ̂L = φ
(1)
L −

√

−η2

η1
φ

(2)
L +

√

η3

η1
φ

(3)
L ,

χL =

√

−η2

η1
φ

(2)
L −

√

η3

η1
φ

(3)
L ,

ψL =

√

η3

η1
φ

(2)
L −

√

−η2

η1
φ

(3)
L , (4.9)

and

χR =

[
√

−η2

η1
+

√

η3

η1

]

[

φ
(2)
R − φ

(3)
R

]

,

ψR =

√

η3

η1
φ

(2)
R −

√

−η2

η1
φ

(3)
R . (4.10)

Substituting these transformations into eq. (4.2) and using the sum rules eqs. (2.32)–(2.34)

leads to a remarkable set of simplifications. Once the parameters ηi are expressed in terms

of masses m2, m3, the LW fermion Lagrangian reads

Lf,LW = φ
(1)
L iD̂/ φ

(1)
L − φ

(2)
(iD̂/ −m2)φ

(2) + φ
(3)

(iD̂/ −m3)φ
(3) , (4.11)
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where of course φ ≡ φL+ φR. Note from the signs of the terms that φ(2) and φ(1),(3) are

negative- and positive-norm states, respectively. The HD, AF and LW Lagrangians for

a right-handed chiral fermion field φ̂R can be obtained from those presented here by the

exchange R ↔ L throughout. The results can then be applied immediately to any chiral

gauge theory (in particular, to the SM) without significant modification.

5. The Higgs sector

The discussion of the theory of a real scalar field in section 2 can be generalized in a

straightforward way to one of a complex scalar Ĥ that transforms in the fundamental

representation of a non-Abelian gauge group. Let us first consider the case in which the

squared scalar mass is positive, m2
H > 0. The HD Lagrangian may be written

LHD = D̂µĤ
†D̂µĤ −m2

HĤ
†Ĥ − 1

M2
1

Ĥ†(D̂µD̂
µ)2Ĥ − 1

M4
2

Ĥ†(D̂µD̂
µ)3Ĥ +Lint(Ĥ) , (5.1)

where m2
H , M2

1 and M2
2 are given by eqs. (2.22)–(2.25) with the identification m2

φ = m2
H .

The auxiliary field Lagrangian analogous to eq. (2.19) is

LAF =
1

η1

{

D̂µĤ
†D̂µĤ −m2

1Ĥ
†Ĥ −

[

χ†(D̂µD̂
µ +m2

1)Ĥ + h.c.
]

+ (m2
2 −m2

1)
1/2(m2

3 −m2
1)

1/2(χ†ψ + ψ†χ) + D̂µψ
†D̂µψ − (m2

2 +m2
3 −m2

1)ψ
†ψ
}

+Lint(Ĥ) , (5.2)

where ψ and the auxiliary field χ also transform in the fundamental representation. Again,

one recovers the HD form of the Lagrangian by applying the constraint equation obtained

from varying with respect to χ. The standard LW form of the theory is obtained via field

redefinitions identical to eqs. (2.26)–(2.28), with the relabelling φ̂→ Ĥ and φ(i) → H(i):

L = −H(1)†(D̂µD̂
µ +m2

1)H
(1) +H(2)†(D̂µD̂

µ +m2
2)H

(2) (5.3)

−H(3)†(D̂µD̂
µ +m2

3)H
(3) + Lint(Ĥ) ,

where

Lint(Ĥ) = L
(√

η1H
(1) −√−η2H

(2) +
√
η3H

(3)
)

. (5.4)

In the SM, spontaneous symmetry breaking is ensured by m2
H < 0. In this case it is

more convenient to absorb the m2
H term into Lint:

LHD = LHD(m2
H = 0) + L′

int(Ĥ) , (5.5)

−L′
int(Ĥ) ≡ λ

4

(

Ĥ†Ĥ − v2

2

)2

, (5.6)

where v is the Higgs vacuum expectation value. The mass parameters m2 and m3 are now

determined by

M2
1 =

m2
2m

2
3

m2
2 +m2

3

and M2
2 = m2m3 . (5.7)
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The m2
H = 0 part of the Lagrangian is handled via the steps described in section 2. Using

the m2
1 = 0 values of the ηi parameters (and noting that η1 = 1), one then finds that the

canonical LW form of the Higgs-sector Lagrangian is given by

L = D̂µH
(1)†D̂µH(1) − D̂µH

(2)†D̂µH(2) + D̂µH
(3)†D̂µH(3) +m2

2H
(2)†H(2) (5.8)

−m2
3H

(3)†H(3) + L′
int

(

H(1) −√−η2H
(2) +

√
η3H

(3)
)

,

where the last term may be expanded

−L′
int =

λ

4

(

H(1)†H(1) − v2

2

)2

+
λ

2

(

H(1)†H(1) − v2

2

)

(5.9)

×
{[

H(1)†(
√−η2H

(2) +
√
η3H

(3)) + h.c.
]

+ |√−η2H
(2) +

√
η3H

(3)|2
]

+
λ

4

{[

H(1)†(
√−η2H

(2) +
√
η3H

(3)) + h.c.
]

+ |√−η2H
(2) +

√
η3H

(3)|2
}2

.

In analogy to the minimal theory [3], one may work in unitary gauge, in which

H(1) =

(

0
1√
2
(v + h1)

)

, H(2) =

(

h+
2

1√
2
(h2 + iP2)

)

, H(3) =

(

h+
3

1√
2
(h3 + iP3)

)

, (5.10)

where the fields hi, Pi and h+
i represent the scalar, pseudoscalar and charged Higgs com-

ponents, respectively. Note that the mass terms in eq. (5.9) are given by

Lmass =
1

2
m2

2 (2h−2 h
+
2 + h2

2 + P 2
2 ) − 1

2
m2

3 (2h−3 h
+
3 + h2

3 + P 2
3 ) (5.11)

−1

2
m2(h1 −

√−η2h2 +
√
η3h3)

2 ,

with m2 = λv2/2, indicating that the charged and pseudoscalar Higgs masses are given

directly by the parameters m2 and m3. The neutral Higgs mass matrix, however, is off-

diagonal; the mass eigenstate basis is obtained via a transformation that preserves the form

of the neutral Higgs kinetic terms, which are proportional to diag(1,−1, 1), in the basis (h1,

h2, h3). Such transformation matrices can be found numerically, as was demonstrated, for

example, in ref. [7]. Using such a numerical diagonalization, and the results presented here,

one can study the phenomenology of the Higgs sector like any other multi-Higgs doublet

extension of the SM. Derivation of the mass matrices of the LW gauge bosons and fermions

is straightforward using the field redefinitions determined in this and the last two sections.

6. Application: divergence cancellation

In this section we consider the cancellation of divergences in an N = 3 SU(Nc) gauge

theory with a single complex scalar field in the fundamental representation. This discussion

generalizes the one appearing in section III of ref. [3], and provides a number of explicit

calculations using the LW form of the theory. We also check that one-loop quadratic

divergences cancel when chiral fermions are present.
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One can learn much about the divergences of the theory by considering the HD form

of the Lagrangian in Landau gauge, where the N = 3 gauge boson propagator scales as

p−6 at high energies (p denotes a generic momentum). The complex scalar propagator also

scales as p−6, while the Faddeev-Popov ghost propagator scales as p−2. The salient issue

is whether the derivatives at the new interaction vertices in the HD theory compensate for

the additional momentum suppression in the propagators. In the N = 3 theory, a vertex

with n vectors scales as p8−n, a vertex with two scalars and n vectors as p6−n, and one

with two ghosts and one gauge field as p. The steps for constructing the superficial degree

of divergence, d are identical to those discussed in section III of ref. [3], so we do not repeat

them. The result in the N = 2 theory,

d = 6 − 2L− E − E′ − 2Eg (N = 2) , (6.1)

becomes

d = 8 − 4L− E − E′ − 3Eg (N = 3) , (6.2)

where L is the number of loops, E is the number of external scalar lines, E′ is the number

of external vector lines, and Eg is the number of external ghosts. [For arbitrary N , one

finds d = 2(N +1)− 2(N − 1)L−E−E′−N Eg.] For the gauge boson and complex scalar

self-energies, d = 6 − 4L; the divergences are at most quadratic and occur at no higher

than one loop.

In the case of the gauge boson self-energies, the cancellation of the potential quadratic

divergence is a consequence of gauge invariance, as in the N = 2 theory [3]. Amplitudes

in the HD theory satisfy a Ward identity, which implies that the 1-particle irreducible

two-point function for Â must be of the form (q2gµν − qµqν) times a dimensionless function

of the regulator scale and the external momentum q2. A straightforward power counting

of HD Lagrangian mass parameters shows that they only multiply the divergent parts of

the possible one-loop diagrams in dimensionless ratios, so that the divergence is at most

logarithmic. An equivalent calculation in the LW form of the Lagrangian is possible but

prohibitive in theories with N > 2 due to the proliferation of gauge boson self-interactions

[see, for example, eq. (3.13)]. If a chiral fermion is added to the N = 3 theory, one finds

that the fermion-vector coupling scales as p4, the fermion/two-vector coupling scales as

p3, and the fermion propagator as p−5. It follows immediately that the one-loop fermion

contributions to the gauge boson self-energy have d = 2; the quadratic divergence cancels

for the same reason as in the purely bosonic loop diagrams.

In the case of the complex scalar, on the other hand, it is straightforward to show the

cancellation of one-loop divergences in the LW form of the theory. We present the explicit

calculation below as an illustration of the formalism.

6.1 The ordinary scalar

We first consider the mass renormalization of the ordinary complex scalar field H1. The

ηi shown in the formulae below are functions eqs. (2.29)–(2.31) of the gauge boson masses

m1 = 0, m2 and m3. We make the same assumptions as ref. [3], that the scalar po-

tential is vanishing so that the ordinary scalar is massless, and work in Feynman gauge.
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(a) (b)

(c) (d)

Figure 1: Diagrams that contribute to the mass renormalization of the complex scalars. The

dashed lines refer to the field H(i), for i = 1, 2 or 3. The curly lines represent the ordinary gauge

field A(1); the zigzag lines represent its LW partners A(2) or A(3).

Equations (32a)-(32d) in ref. [3] generalize as follows:

−iΣa(0) = g2C2(Nc)

∫

dnk

(2π)n
n

k2
, (6.3)

iΣb(0) = −g2C2(Nc)

∫

dnk

(2π)n

[(

n− 1

k2 −m2
2

− 1

m2
2

)(

−η2

η1

)

−
(

n− 1

k2 −m2
3

− 1

m2
3

)(

η3

η1

)]

, (6.4)

−iΣc(0) = −g2C2(Nc)

∫

dnk

(2π)n
1

k2
, (6.5)

−iΣd(0) = −g2C2(Nc)

∫

dnk

(2π)n

[

1

m2
2

(

−η2

η1

)

− 1

m2
3

(

η3

η1

)]

. (6.6)

These results correspond to the diagrams shown in figure 1. The cancellation of quartic di-

vergences [between eqs. (6.4) and (6.6)] is obvious by inspection. The quadratic divergence

originates from

n

k2
+
n− 1

k2

(

η2 + η3

η1

)

− 1

k2
, (6.7)

where the terms are the k2 ≫ m2
i limits of the integrands of eqs. (6.3), (6.4) and (6.5),

respectively. This quantity vanishes because η1 + η2 + η3 = 0. Hence, the ordinary scalar

mass remains logarithmically divergent, as in the N = 2 theory.

6.2 The Negative-Norm LW scalar

The normal scalar discussed in the last subsection has two LW partners in the N = 3

theory. We first consider the shift in the pole mass of the lighter, negative-norm state,
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whose mass we denote by mH2
. Equations (33a)-(33d) in ref. [3] generalize as follows:

−iΣa(m
2
H2

) = −g2C2(Nc)

∫

dnk

(2π)n
n

k2
, (6.8)

−iΣb(m
2
H2

) = g2C2(Nc)

∫

dnk

(2π)n

[(

n− 1

k2 −m2
2

− 1

m2
2

)(

−η2

η1

)

−
(

n− 1

k2 −m2
3

− 1

m2
3

)(

η3

η1

)]

, (6.9)

−iΣc(m
2
H2

) = g2C2(Nc)

∫

dnk

(2π)n

[

1

k2 − 2p · k +
4m2

H2
− 4p · k

k2(k2 − 2p · k)

]

, (6.10)

−iΣd(m
2
H2

) = g2C2(Nc)

∫

dnk

(2π)n

[(

1

m2
2

−
4m2

H2
− 2p · k

(k2 −m2
2)(k

2 − 2p · k)

)

(

−η2

η1

)

−
(

1

m2
3

−
4m2

H2
− 2p · k

(k2 −m2
3)(k

2 − 2p · k)

)

(

η3

η1

)

]

. (6.11)

Terms manifestly odd in k have been dropped. Quartically divergent terms clearly can-

cel between eqs. (6.9) and (6.11). Quadratic divergences are found in eqs. (6.8), (6.9)

and (6.10), but again in a combination proportional to η1 + η2 + η3 = 0. Thus, quadratic

divergences cancel between diagrams and only a logarithmic divergence remains.

6.3 The Positive-Norm LW scalar

The on-shell self-energies of the heavier, positive-norm LW scalar (with mass mH3
) may be

obtained from eqs. (6.8)–(6.11) by replacing mH2
→ mH3

, and by flipping the overall sign

of these results. The sign flip originates from the change in sign of the H3 quadratic terms

relative to those of H2. In the a and b diagrams, the sign flip originates from the opposite

sign of the two-scalar/two-gauge vertex; in the c and d diagrams, it originates from sign

changes at each vertex and in the scalar propagator. These modification do not alter the

cancellation of divergences between diagrams, so that the positive-norm LW scalar mass

also receives only logarithmic corrections.

6.4 Yukawa couplings

If chiral fermions are present in the theory, then one may also consider the effect of Yukawa

couplings like

L = λ
(

¯̂
φLĤψ̂R + h.c.

)

, (6.12)

where φ̂L transforms in the fundamental representation, while ψR is a singlet. Letting ηi

refer to the LW mass spectrum of φ
(i)
L and η′i to that of ψ

(i)
R , it is easy to see that the

quadratically divergent part of the one-fermion loop contribution to the complex scalar

self-energy is proportional to
(

1 +
η2

η1
+
η3

η1

)(

1 +
η′2
η′1

+
η′3
η′1

)

(6.13)

which vanishes since η1 + η2 + η3 = 0 (and similarly for the η′i), again confirming that the

quadratic divergences are cancelled at one loop.
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7. Conclusions

The Lee-Wick Standard Model provides a new theory that is interesting from both the

formal field-theoretical and phenomenological points of view. Its means of solving the

hierarchy problem, by cancelling the leading divergences of loop diagrams between each

particle and a partner of the same statistics and quantum numbers but carrying wrong-sign

kinetic and mass terms, is innovative and worthy of detailed study.

To this end, we have developed the generalization of the theory to allow each particle

two LW partners. Since the original Lee-Wick Standard Model [3] involves higher-derivative

quadratic terms of O(p4) in momentum space (for the bosonic fields), our theory necessarily

includes terms of O(p6). Referring to the number of poles in the two-point function, we

name these the N = 2 and N = 3 Lee-Wick theories, respectively. We note that there is

no impediment, in principle, that prevents the generalization of our approach to theories

with N > 3.

The recasting of HD theories in terms of fields satisfying low-order equations of motion

(the Ostrogradsky method for reducing high-order differential equations to a recursive

system of low-order ones, as applied to quantum field theory) was developed decades ago

by Pais and Uhlenbeck [12]. The results presented here are new in a number of significant

respects. First, we supply the prescription for rewriting a viable N = 3 HD theory in terms

of an equivalent AF theory containing no terms of dimension higher than four; the N =2

case was developed of course by Grinstein et al. in ref. [3]. Such auxiliary fields provide

constraints that are exact at the quantum level, and once imposed, exactly reproduce the

HD Lagrangian. On the other hand, the auxiliary fields may be rewritten in terms of a set

of fields whose quadratic terms are canonical, up to overall signs, and whose couplings are

intricately intertwined. For N= 3, these fields consist of the original particle, one negative-

norm and one positive-norm LW partner; the three fields together conspire to cancel the

quadratic divergences in the theory. Notably, our N = 3 analysis includes non-Abelian

chiral gauge theories, with or without spontaneous symmetry breaking, topics that were

not addressed in the ancient literature on nonlocal Lagrangians.

We have successfully developed this construction, with minor variations, in theories

with real scalars, fermions, gauge bosons, and complex scalars, and allowing for sponta-

neous symmetry breaking. One concludes that the entire Standard Model may be easily

embedded in an N= 3 LW theory, a possibility that offers an abundant new wellspring for

future studies of the formal properties and phenomenology of the model.
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